9 research outputs found

    Mean deviation based identification of activated voxels from time-series fMRI data of schizophrenia patients [version 2; referees: 2 approved]

    Get PDF
    Background: Schizophrenia is a serious mental illness affecting different regions of the brain, which causes symptoms such as hallucinations and delusions. Functional magnetic resonance imaging (fMRI) is the most popular technique to study the functional activation patterns of the brain. The fMRI data is four-dimensional, composed of 3D brain images over time. Each voxel of the 3D brain volume is associated with a time series of signal intensity values. This study aimed to identify the distinct voxels from time-series fMRI data that show high functional activation during a task. Methods: In this study, a novel mean-deviation based approach was applied to time-series fMRI data of 34 schizophrenia patients and 34 healthy subjects. The statistical measures such as mean and median were used to find the functional changes in each voxel over time. The voxels that show significant changes for each subject were selected and thus used as the feature set during the classification of schizophrenia patients and healthy controls. Results: The proposed approach identifies a set of relevant voxels that are used to distinguish between healthy and schizophrenia subjects with high classification accuracy. The study shows functional changes in brain regions such as superior frontal gyrus, cuneus, medial frontal gyrus, middle occipital gyrus, and superior temporal gyrus. Conclusions: This work describes a simple yet novel feature selection algorithm for time-series fMRI data to identify the activated brain voxels that are generally affected in schizophrenia. The brain regions identified in this study may further help clinicians to understand the illness for better medical intervention. It may be possible to explore the approach to fMRI data of other psychological disorders

    Detection of brain regions responsible for chronic pain in osteoarthritis: an fMRI-based neuroimaging study using deep learning

    Get PDF
    IntroductionChronic pain is a multifaceted condition that has yet to be fully comprehended. It is frequently linked with a range of disorders, particularly osteoarthritis (OA), which arises from the progressive deterioration of the protective cartilage that cushions the bone endings over time.MethodsIn this paper, we examine the impact of chronic pain on the brain using advanced deep learning (DL) algorithms that leverage resting-state functional magnetic resonance imaging (fMRI) data from both OA pain patients and healthy controls. Our study encompasses fMRI data from 51 pain patients and 20 healthy subjects. To differentiate chronic pain-affected OA patients from healthy controls, we introduce a DL-based computer-aided diagnosis framework that incorporates Multi-Layer Perceptron and Convolutional Neural Networks (CNN), separately.ResultsAmong the examined algorithms, we discovered that CNN outperformed the others and achieved a notable accuracy rate of nearly 85%. In addition, our investigation scrutinized the brain regions affected by chronic pain and successfully identified several regions that have not been mentioned in previous literature, including the occipital lobe, the superior frontal gyrus, the cuneus, the middle occipital gyrus, and the culmen.DiscussionThis pioneering study explores the applicability of DL algorithms in pinpointing the differentiating brain regions in OA patients who experience chronic pain. The outcomes of our research could make a significant contribution to medical research on OA pain patients and facilitate fMRI-based pain recognition, ultimately leading to enhanced clinical intervention for chronic pain patients

    Neuroadaptive incentivization in healthcare using Blockchain and IoT

    Get PDF
    Financially incentivizing health-related behaviors can improve health record outcomes and reduce healthcare costs. Blockchain and IoT technologies can be used to develop safe and transparent incentive schemes in healthcare. IoT devices, such as body sensor networks and wearable sensors, etc. connect the physical and digital world making it easier to collect useful health-related data for further analysis. There are, however, many security and privacy issues with the use of IoT. Some of these IoT security issues can be alleviated using Blockchain technology. Incorporating neuroadaptive technology can result in more personalized and effective therapies using machine learning algorithms and real-time feedback. The research investigates the possibilities of neuroadaptive incentivization in healthcare using Blockchain and IoT on patient health records. The core idea is to incentivize patients to keep their health parameters within standard range thereby reducing the load on healthcare system. In summary, we have presented a proof of concept for neuroadaptive incentivization in healthcare using Blockchain and IoT and discuss various applications and implementation challenges

    Identification of brain regions associated with working memory deficit in schizophrenia [version 1; peer review: 2 approved]

    Get PDF
    Background: Schizophrenia, a severe psychological disorder, shows symptoms such as hallucinations and delusions. In addition, patients with schizophrenia often exhibit a deficit in working memory which adversely impacts the attentiveness and the behavioral characteristics of a person. Although several clinical efforts have already been made to study working memory deficit in schizophrenia, in this paper, we investigate the applicability of a machine learning approach for identification of the brain regions that get affected by schizophrenia leading to the dysfunction of the working memory. Methods: We propose a novel scheme for identification of the affected brain regions from functional magnetic resonance imaging data by deploying group independent component analysis in conjunction with feature extraction based on statistical measures, followed by sequential forward feature selection. The features that show highest accuracy during the classification between healthy and schizophrenia subjects are selected. Results: This study reveals several brain regions like cerebellum, inferior temporal gyrus, superior temporal gyrus, superior frontal gyrus, insula, and amygdala that have been reported in the existing literature, thus validating the proposed approach. We are also able to identify some functional changes in the brain regions, such as Heschl gyrus and the vermian area, which have not been reported in the literature involving working memory studies amongst schizophrenia patients. Conclusions: As our study confirms the results obtained in earlier studies, in addition to pointing out some brain regions not reported in earlier studies, the findings are likely to serve as a cue for clinical investigation, leading to better medical intervention

    Development of a Machine Learning-Based Framework for Predicting Vessel Size Based on Container Capacity

    No full text
    Ports are important hubs in logistics and supply chain systems, where the majority of the available data is still not being fully exploited. Container throughput is the amount of work done by the TEU and the ability to handle containers at a minimal cost. This capacity of container throughput is the most important part of the scale of services, which is a crucial factor in selecting port terminals. At the port container terminal, it is necessary to allocate an appropriate number of available quay cranes to the berth before container ships arrive at the port container terminal. Predicting the size of a ship is especially important for calculating the number of quay cranes that should be allocated to ships that will eventually dock at the port terminal. Machine learning techniques are flexible tools for utilizing and unlocking the value of the data. In this paper, we used neighborhood component analysis as a tool for feature selection and state-of-the-art machine learning algorithms for multiclass classification. The paper proposes a novel two-stage approach for estimating and predicting vessel size based on container capacity. Our proposed approach revealed seven unique features of port data, which are the essential parameters for the identification of the vessel size. We obtained the highest average classification accuracy of 97.6% with the linear support vector machine classifier. This study paves a new direction for research in port logistics incorporating machine learning

    Development of a Machine Learning-Based Framework for Predicting Vessel Size Based on Container Capacity

    No full text
    Ports are important hubs in logistics and supply chain systems, where the majority of the available data is still not being fully exploited. Container throughput is the amount of work done by the TEU and the ability to handle containers at a minimal cost. This capacity of container throughput is the most important part of the scale of services, which is a crucial factor in selecting port terminals. At the port container terminal, it is necessary to allocate an appropriate number of available quay cranes to the berth before container ships arrive at the port container terminal. Predicting the size of a ship is especially important for calculating the number of quay cranes that should be allocated to ships that will eventually dock at the port terminal. Machine learning techniques are flexible tools for utilizing and unlocking the value of the data. In this paper, we used neighborhood component analysis as a tool for feature selection and state-of-the-art machine learning algorithms for multiclass classification. The paper proposes a novel two-stage approach for estimating and predicting vessel size based on container capacity. Our proposed approach revealed seven unique features of port data, which are the essential parameters for the identification of the vessel size. We obtained the highest average classification accuracy of 97.6% with the linear support vector machine classifier. This study paves a new direction for research in port logistics incorporating machine learning

    Integrated neural technologies: solutions beyond tomorrow

    No full text
    Neuroscience is an exciting area in which, at a fast rate, revolutionary advances materialise. Neurotechnology is interesting and contentious at the same time, as one of its aims is to "wire" human brains directly into computers. Neurotechnology is defined as the assembly of methods and instruments which allow a direct connection to the nervous system of technical components. These instruments are electrodes, machines or smart prostheses. They are designed to record and/or "translate" impulses from the brain into control instructions, or to modify brain function through the application of electrical or optical stimulation. The emergence of neuro-technologies is interdisciplinary. It supports the amalgamation of neurobiology with atomic, nano- and micro-sciences, as a fascinating path for significant development in the neuroscience domain. It poses a scientific foundation for potential therapeutic strategie

    Development of a cognitive-based smartphone application for Malaysian Parkinsonโ€™s disease patients: exploring the possibility?

    No full text
    The COVID-19 pandemic has accelerated the digital health system. Healthcare organizations want to give medical treatment to individuals who live a great distance away. As a result, they are emphasizing the creation of bespoke telemedicine apps. The number of individuals using telemedicine apps is increasing significantly. Increasing technology gives patients healthcare resources. This has been made feasible via a new telemedicine system and by developing a telemedicine app. Patients can use several technologies to communicate with healthcare professionals. For comfort and privacy, you can employ live visual media. The creation of telemedicine apps is the most attractive and practical investment. With the growing availability and usage of technology in PD, the focus of these technologies is gradually turning toward the disease's vast spectrum of Non-Motor Symptoms (NMS). The nature of NMS makes them difficult to objectively measure, further development and building on experience gained in other conditions may still result in NMS capture that is feasible. Although it is impossible to offer recommendations for the use of digital technology outcomes for NMS in clinical practise based on currently available data, evidence for these devices is evolving, and such guidance may become accessible in the not-too-distant future. To our knowledge, this is the first telemedicine method of its sort to address cognition as one of the NMS in Malay PD patients. The project will be done on two consecutive phases (1 year each); Phase1 aims to develop the Dementia Coach Mobile App, and Phase2 aims to validation of this app by using PD patients sample from SASMEC. Therefore, we hypothesize that developing a friendly mobile app to assess dementia for PD patients is highly beneficial and could be used for diagnosis of NMS in PD patients

    Abstracts of 1st International Conference on Machine Intelligence and System Sciences

    No full text
    This book contains the abstracts of the papers presented at the International Conference on Machine Intelligence and System Sciences (MISS-2021) Organized by the Techno College of Engineering, Agartala, Tripura, India & Tongmyong University, Busan, South Korea, held on 1โ€“2 November 2021. This conference was intended to enable researchers to build connections between different digital technologies based on Machine Intelligence, Image Processing, and the Internet of Things (IoT). Conference Title: 1st International Conference on Machine Intelligence and System SciencesConference Acronym: MISS-2021Conference Date: 1โ€“2 November 2021Conference Location: Techno College of Engineering Agartala, Tripura(w), IndiaConference Organizer: Techno College of Engineering, Agartala, Tripura, India & Tongmyong University, Busan, South Korea
    corecore